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PREFACE

. This Memorandum is part of RAND's continulng effort
in the application of network flow theory. It provides ]
a graphic description of the out-of-kilter algorithm,

together with useful computational methods. Network

flow problems arise i{n the solution of transportation
E and scheduling problems, This work is directed toward
g the user and programmer «f network-solving algorithms,
Portions of this material were presented at the

SHARE XXIX meeting, August 1967.
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SUMMARY

Network flow problems arise in the sclution of trans-
portation and schaduling problems. Divided into four
substantially independent sections, this Memorandum:

1) reviews the types of problems that are representable
as capacitated network problems; 2) explains (with
diagrams) the out-of-kilter algorithm and techniques for
implementing it nn a comput r; 3) describes modification
of the algorithm to a two-phase algorithm; 4) presents

a method for labeling the nodes by means of a scan list,
Tentative conclusions are that the two-phase algorithm
is undesirable, and that the labeling procedure shortens

computer time at the cost of using more memory.
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SYEOLS

Tha subscript notation is cquivalent to parentheses

or brackets; e.g., Sj 5() = sl{j1.

‘ij Incidence matrix,

bi Node flow.

cj Unit cost,

Ej Reduced cost.

dj Total cost, as a function of flow, in one arc.
ej Cycle indicators.

gj Scrambled source node arc list,
hj Scrambled sink node arc list,

i Node subscript.

3 Arc subscript.

J Target arc.

k Node subscript.

kJ Kilter number.

¥ Total kilter number.

LJ Lower capacity,

Li Node label.

m Number of nodes.

n Number of arcs.

P Position of scanner.
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Infeasibility number.

Total infeasibility,

Scan list.

Reference node.

Langth of acan list,

Source node.

Sink node.

Upper capacity.

Source node reference list,

Sink node reference list,

Amount of flow,

Alternate designation of flow.

Special reduced cost.

Objective value,

Dual slack variable,

Node price. pi(l) is used in ALGOL programs.
Temporary symhol for constructing the gj lisgt.
Temporary symbol for constructing the Uy ligt.

Temporary symbol for constructing the Vi ligt,
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1, _INTRODUCTION

THE CAPACITATED NETWORK PROBLEM

A network is made up of a set of podes together with

a set of directed arcs. Figure 1 is an example cf a net-

work with five nodes and eight arcs. The nodes are desig-

nated by the letters A, B, C, D, and E, and directed arcs

A B 2
1 C
- 3 -
8 7
5
6
D E

Fig. l-<Example Network

are numbered 1, 2, 3, 4, 5, 6, 7, and 8. An alternative
way of designating these arcs is by ordered pairs of nodes;
hence, arc 1 is also arc (A,B), arc 2 s arc (B,C), arc 3
is arc (C,B), etc. The first node of the ordered pair,
called the source node, is the node from which the indi-

cated arrow is directed; the second node, called the

aes




sink node, is the node toward which the arrow is directed.
Note that arcs 5 and 6 are both designated as arc (D,E),
so that a subscript on the ordered pair of nodes must be
used to distinguish batween non-unique ordered pairs.
Hence, arc 5 is arc (D,E)1 and arc 6 is arc (D,E)z. Also,
the set of arcs is ncen-exhaustive; e.g., there is no arc
(C,D) or (D,C) in Fig. 1.

The capacitated network problem consists of a network,
together with the following four quantities for each arc VE

1) cj: The cost of sending one unit of flow along
arc j from its source node to its sink node.

2) u,: The upper capacity of arc j.

3
3) ¢ .

J: The lower capacity of arc j,
4) xo- The nominal flow along arc j.

it
Denoting the aumber of nodes in the network as m and
the number of arcs as n, the nominal flows, x?, determine
the ncde_ccnstraints
n
Z aij xJ - bi {=1,2,...,m .
j=1

Here
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+1 if node 4 is the source nodz
for arc j;
a . = -1 if node 1 is the sink node
3 ) ]
for arc j;
0 otherwise.

And bi is found by evaluating
n
0 .
bi- Z aij xj i=1,2,...,m .
j=1

Note that each column of the (aij) matrix has only two

non-zZero entries: +1 and -1. Since

IE n m
Zbi'i("? Z “ij)“o’
{=

1 j=1 i=1

at least one node constraint i. cdundant. Specifying
a nominal flow, x?, uniquely determines bl’bZ”"’bm’

such that b, + b, +...+ b = 0. A nomipal solution is

any vector (xl,x .,xn) that satisfies

2°°

Z gy X5 = by i=1,2,...,m .




A feasible solution of the capacitated network problem

is any vector (xl,xz,...,xn), such that
n
1) L aij xj =b, i=1,2,...,m
i=1
2) x, 214 j=1,2,...,n
b/ h] ’ |
3) xj < uj j=1,2,...,n ;

that is, a feasible solution is a nominal solution that
satisfies Lj s xj < uj for all arcs j. 1If there is at
least one feasible solution to the problem, then an optimal

solution is a feasible solution that minimizes

n
4) & = z cj xj ,
j=1

where @ is called the objective value. That is, a

feasible solution (yl,yz,...,yn) is oprimal 1if
n n
ey vy s Loy
j=1 =1

for all feasibie solution vectors (xl,xz,...,x ).




The quantity bi' called the node 1 flow, is the net

flow out of node 1. 1If bi is zero, node 1 is said to be

conservative. If all nodes are conservative, then the

zero vector is a nominal solution, and the network is
conservative. The algorithm for solving the capacitated
network problem requires a nominal solution rather than
a set of node flows. A simple method of determining a
nominal solution is to make the network conservative. This
is done by adjoining one more node, called the supernode,
to the network, together with an arc from each node that
is not conservative to the supernode. The lower capacity
and upper capacity of each additional arc are both set
equal to the net flow out of the node. The zero vector
is then a nominal solution for this augmented network.
Note that there are no sign restrictions on any of
i’ uj, Lj, xg, xj or bi' However, the
problem is trivially infeasible if u, < ¢,.

3 A
A simple capacitated network is a capacitated network

the quantities c

with lower capacities (Lj) of zero. A general network may

be translated to make it simple. Let

£

[Py |




for all j. The node constraints above were

n n
z aij xj - z aij xg i=1,2,...,m ,
j=1 j=1

where the right sides to these equations are the constants
n
0
bi Zaij xj i=1,2,...,m .
i=1

Substituting the above quantities having a diacritic
tilde into the node constraints, capacity inequalities and

the objective function results in

n n
1) Zaij(ij + LJ) - zaij(?ig + z,j) i=1,2,...,m
j=1 =1
2) §EJ * ey oy i=1,2,...,n
3) '§j+cj s uy +LJ j=1,2,...,n




n
4) @ = ch(?{j 1)
i=1
By letting
n

and
n
=0 - L,
€3 %
j=1
the above becomes
n
1) Zaij xj -bi i=1,2,...,m
J=1
2) ‘ij z 0 j=1,2,...,n
3) §j st j=1,2,...,n
n
4) & = ch xj
J=1

Since & is at its minimum 1f and only if ¢ is at its
minimum, the solution of the translated problem is the

translation of the solution of the original problem.




Other linear, and some non-linear, network and trans-
portation problems are representable as capacitated net-
work problems [l}.* The ¢]lgssical transportation problem
involves a network whose nodes are divided into two classes:
source nodes and destination nodes. 1If there are s source
nodes and d destination nodes, then there are sd directed
arcs; one arc from each source node to each destination
node. These arcs are uncapacitated, which means that
LJ = 0 and uj = 4= for each arc j. Each source node has
a net flow out of it, called the supply; and each destina-
tion node has a net flow into it, called the demand. Each
arc has a unit cost which {s the same as cj above. This
problem may be solved as a capacitated network problem
by making the upper capacities very large, although special
algorithms are available that solve specifically this prob-
lem. The capacitated transportation problem is as above,
except that (some of) the upper capacities are not in-
finite. If an upper capacity is zero, the corresponding
arc need not be included when solving the capacitated

transportation problem as a capacitated network problem.

*
See also Ref. 2, Chap. 14.




The capacitated network algorithm will solve problems
with non-lincar cost functfons if the unit cost function
for a given arc is plecewise constant and monotone increasing

{non-decreasing)., Let
d(x) = fc{x}dx ,

where c¢(x) is the unit cost function, and d(x) is the total
cost as a function of the flow x. Then d(x) must be piece-

wise linear and convex. If the cost function has r 'pieces'--

Xg $ X S Xy, c(x) = €y d(x) = cyx + ¢4

X) <X SXy, c(x) = ey d(x) = d(xl) + cz(x-xl)

X, < T S X3 c(x? =cy, d(x) = d(xz).+ c3(x-x2)
X..1 é X S X, c(x; -c. d(x) = d(xr_;) + Cr(x'xr-l)

--then this arc is represented by r parallel arcs (having

the same source node and sink node) with
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1% % Ut

Lz = 0 u, = X, - xl
La - ( Uy = X3 = X,
Lt = 0 u, = X, = xr-l

and unit costs C11€91Cqy+nesC and nominal flows such

that

is the nominal flow for the composite arc. The answer

(optimum flow) for the composite arc is

This representation of the composite arc is not unique,
as can be seen from the converse. Suppose that there are

r parallel arcs with lower capacities LI,LZ,...,Lr; upper

capacities Uy slp e s, U unit costs €11C9s- 009y with




vll=-

00 x0
1:“2’-"-| r'

these r arcs are equivalent to the arc with the following

¢y < <, $...8 Cps and nominal flows x Then

composite unit cost:

rfoa. s = _
4 ¢y {1 + 62 +...t Lr ¥ X Uy + {2 ...
c2 : u1 + Lz +...4+ Lr < X S u1 + Uy + 13
§ »
| i-1 r i r
c(x)-<ct :Zuj+>,('j<xszuj+2,4'
1 i 1 i+l
| cr : u1 + u2 +...+ ur_1 + Lr < X % u1 + u

with lower capacity

r
Lty
i=1

upper capacity

i1

j=1

+

+

8}
r
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and nominal flow

r -
zxs) :
=1

Thus, for example, the composite arc whose total cost is

the absolute value of the flow has composite unit cost

c(x) =

and Lf the lower bound L8 the negative of the upper bound
u and the nominal flow 1is xo, then this arc is equivalent

to the two parallel arcs Qith:

41 = -y + u, = o ¢y = -1 xg = 8

L2 LY Up = u -« cy = +1 X

where o and B8 are arbitrary. Although o and B8 are arbi-
crary as far as the optimal flow (x1 + xz) is concerned
(1f unique), the value for B may affect the speed of

solution; while 1f ¢ is not zero, the objective function

(®) is decrcased by the constant 2a,
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A (simple) arc can be reversed in direction by
changing the signs of {ts unit cost and nominal tlow and
reversing the upper and lower capacities and changing
their signs, Denoting a dircetion reversal by a circumflox,

this transiormation is

>

(23}
B

-C

Returning to the capacitated network problem in its

translated form (zero lower capacities)--

n
1) z aij xJ - bi i=1,2,...,m
j=1
2) 0 = xj £ uJ j=1,2,...,n
n

3) minimize Z cj xj
i=1




--this problem may be stated as a primal linea: programming
protlem by defining n slack variables SR Y PR e

The linear programming problem {5 then:

n
minimize ) ¢, x, with x yX5,...,X, non-negative, subject to
1°72 2n

3
j=1

n

Zaij xy = by 1=1,2,...,m
i=1

x, + xn+j = “j j=1,2,...,n .

3

Associated with the linear programming problem solution is
a set of shadow prices (the negative of the dnal variables)
MysToseoes® s Al,kz,...,kn. A necessary condition for
optimality is that there exist shadow prices such that

m

cj + 2 aij ﬂi + Aj 2 0
i=]

)

Y §=1,2,...n .




2, +A, 20

j=1,Z2,...,n .

Moreover, if xj (j £ n) is positive (then variable j is

basic), the equality holds:

i.e., ¢

3

and if xj+n is positive (i.e., x, < uj)’ then

3

Hence, if
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The quantities MisMgsess,m  are called the node prices.
The quantities 81’62""’En are the marginal or reduced
costs. Since only two of the quantities alj’aZj""’amj

are non-zero=--in particular, if i is the source node for

arc }, then a,, = +1; and if k is the sink node for .rc j,

1j
then akj = o]lwa

[ ™
or in a double subscripted arc notation:

cik-cik-kﬂi-nk.
The implications
c, s 0 1f x, >0
i 3
c. ~ 0 f <
cJ i xj uj
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are also sufficient conditions for KXy ooy Xy being an

optimsl solution since

n
-
$ = Z'cj xj

3=t
n m

= z (Cj - ZWi 81.1) xj
J=1 i=1
n m n

= Zaj X" 2"1 Z“ij *5
j=1 {=1 4=l
n m

- b b

= Z”j X5 L™ Py

j=1 =1

cannot be decreased by making a feasible change in the —
flow (Xj). That is, a feasible solution (x;,Xy,...,% )

has minimum & if there exist shadow prices (ﬂl,ﬂz,...,ﬂm)

such that x; >0 implies Ej s 0 and X, < u implies Ej z 0.
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II. THE OUT-OF-KILYER ALGORITHM

The method describcd here is similar to that set forth
in Ref. 3. For each arc, j, let S{j] be its source node
and T{jJ its sink node. Each node, i, has a price, n({)
or 7 . The reduced cost, Ej’ of arc j, is related to its

unit cost, cj, by

cj - cj + o(s{3)) - «(T(i]) .

A set of flows XpsXgse s Xy in the arcs is called a nominal

solution if

n
Zl” x; = b i=1,2,...,m (1)
i=1

where the (aij) matrix is such that for each arc j,

+1 1if 1 = §[j]
= (-1 if 1 =7T[3j]
0 otherwise

and the b, are integers, known as the node flows. A

i
nominal solution is a feasible solution if, in addition to

Eq' (1) ’
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J=1,2,...,n (2)

where Lj and “j are given integers. ¢, is known as the

3

lower capacity, and u, is known as the upper capacity. A

J
feasible solution is an optimal solution if

n
¢ - z:cj xJ
=1

is a minimum over all feasible solutions. A necessary
and sufficient condition that a feasible solution be
optimal is that there exist M sMpae ey such that the

Ej calculated from these 7, satisfy:

$ 3=1,2,...,n . (3)

For any set of nominal xj and any LT let kj be the

*
kilter number of arc j, defined as follows:

*
This differs from the kilter number defined in
Ref. 3.

o
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or equivalently,
kj = max (0, Xy =y, Lj - Xy, sgn(Ej)(xJ - Lj), sgn(EJ)(xj - uj))

By comparing kj with Eqs. (2) and (3), it can be seen that
every kj is zero only 1if the solution is optimal. The value
of kj’ never negative, is the amount that arc j is "out-of-

kilter.'" The amount that the problem is "out-of-kilter' is
n
K = ij.
J=l

The network problem could thus be stated as the problem of
finding LM and nominal xj such that K is a minimum. Let

Ko be the minimum such K. If Ko is zero (i.e., the problem
is feasible), it is possible to reduce each kj to zero with-

out increasing any of the other kilter numbers in the process.

If the problem is infeasible (Ko ¥ 0), the algorithm described




in this section may not attain K = Ko, because {f Ko >0

A lower value of K i8 sometimes attainable only at the
expense of increasing the kilter numbers of some arcs.

In order to attain K = KO’ it is (sometimes) necessary to
use a “"two-phase' algorithm for which the second phase is
given heres. The first phase of this 'two-phase' algorithm
is discussed in Sec. III. For most purposes, the algorithm
described in this section is sufficient, since one wsually
deals with a feasible problem or a problem with obvious in-
feasibilities.

The algorithm fcr solving & network problem begins
with any node prices and any nominal solution, then proceeds
as follows. An arc {8 found with a non-zero kilter number.
Then a labeling procedure s initiated that attempts to
find a cycle of arcs along which at least one unit of flow
can be pushed without increasing the kilter numbers in any
arc in the cycle, If such a cycle is found, the indicated
flow change is made, thus decreasing the kilter number of
at least one arc. If no cycle is found, a change in the
rniode prices is made, such that the labeling procedure now
will result in more nodes being labeled. When no more
progress with a particular arc can be made, the algorithm
looks for another out-of-kilter arc. When all arcs are

elither in-kilter or in a condition such that no improvement

L X1}
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in the kilter nurber can be made, the algorithm terminates.
Convergence of the algorithm is proved by showing that the
number of consecutive labeling procedures that can be
attempted without decreasing the total kilter number is
bounded.

For example, arcs 5, 4, 3, and 7 In Fig. 1 form a
cycle, with arc 7 traversed backwards. To indicate that
arc 7 is traversed backwards, it will be denoted as arc -7.
Thus, the atove cycle is 5, 4, 3, =7. In order to define
a cycle in algebraic terms, let €1189, .00 @ be numbers

such that

+l 1if arc j is traversed forward
ej = ( =1 if arc j 1s traversed backward

0 4if arc j is not traversed .

Then these arcs which are traversed form a cycle if

n
z .ij eJ =0 {=1,2,...,m .
i=1

Moreover, this cycle is a simple cycle if no node appears

a8 either a source node or a sink nede on any arc in the




*
cycle more than twice, i.e., if

n
2."£j ejl s 2 im1,2,...,m .
=1

Thus, it can be seen that any amount of flow may be pushed
throagh a cycle without changing the node constraints.
That is, nominality o' the flow is preserved by replacing
xj by xj + Mej for all } and M any constant.

For Fig. 1l the (.15) matrix has the form

-1 0 0 0 ) 0 0 -;j node A
-1 1 -1 0 0 o -1 0f node B
A= 0 -1 1 -1 0 0 0 0f node C
0 0 0 0 1 1 1 1] node D
0 0 0 1 -1 -1 0 0] node E
e —

and for the sbove example the e,'s are 0, 0, 1, 1, 1, 0, =1,

3
and 0,

For any arc j, we may denote its position in a state
diggram (assuming u‘1 > Lj). Figure 2 shows the 15 posaible

combinations of Xy and Ej in relation to the capacities.

*
A simple cycle may also be defined as a minimal
dependent set of columns of A.




c <0 c ~0 c >0
x> u X >u X > u
(aS) (B5) (¥5)
e <0 c=0 e >0
X = 4 X = g X = y
(ab) (84) (y4)
c <0 c =0 c >0
L <x <u ‘ { <x<u ! €« x <u
(a3) (83) (»3)
c <0 c =0 c >0
X =} % = ! x = {
(a2) (82) (r2)
c <0 c =0 c>0
x < ¢ x < ¢ x < ¢
(al) (B1) (r1)

Fig. 2--State Diagram

No.e that states o4, B4, B3, B2, and ¥2 are "in-kilter,"

and that reversing an arc (reversing its direction, its
upper and lower bounds, and changing the signs of c, x,

u, and ¢) "reflects" its state through the center box A3.
The arcs in boxes a3, a2, al, Bl, and y1 need to have thelir
flows increased to bring them into kilter (see upward point-

ing arrows in Fig. 3); and their kilter numbers are precisely
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the amount of flow increase needed to bring them into
kilter. Thesc arcs will be called sub-kilter arcs.
Similarly, the arcs in states a5, 85, »5, r4, and ¥3
must have their flows dacreased by an amount equal to
their kilter numbers in order to bring them into kilter.

These arcs will be called super~kiiter arcs.

Fig. 3--Flow Changes that Decrease the Kilter Numbers
{Indicated by straight arrows. Waved arrows
indicate flow changes that do not change the
kilter number.)

Moreover, an arc in state 82 or B3 may increase its flow

at least one unit without increasing its kilter number and
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without decreasing its kilter number since cha kilter
number is zero. These poasible flc ~creases, together
with possible decrasses for the co. mentary states, are
indizated by the waved arrows in Fig.

Because of the symmetry of the state diagram, a ruls
for increasing the flow in a subekilter arc 'ias its com-
plementary rule in a super-kilter arc. For the sake of
brevity, we assume that the arcs are directad whichever
way is the most convenient for the discussion. Bear in

mind that any arc may be reversed if desired.

LABELING PROCEPURE
The nodes are labeled with arc numbers. Begin with
all node labels L(i) at zero. A node is unlabeled if ite

label is zero and it is labeled if its label i{s non-zero.

Find an arc that is out-of-kilter, and assume that it is
super-kilter (its flow must be decreased). This arc is
the target arc, say arc J. Label its source node S{J]
with the label J, i.e., set L(S{J]) = J. Now find any arc,
j, where one node is labeled and one is not. Assume its
source node, i, is labeled and its sink no&o, k, is not.

If the flow may be increased without increasing the kilter

number of the arc, then label the sink node of this arc

Tra

P UEN
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with the arc number; i.e., set L(k) = j. Continue looking
for nodes to label until one of two occurrences:

1) The sink nodz T(J) of the target arc is labeled,
or

2) No more nodes can be labeled.
These two possibilities are known respectively as 1) break-

through and 2) non-breakthrough.

BREAKTHROUGH

Since the sink node of the target arc was labeled,
there is a path of arcs from the source node of the target
arc to the sink node of the target arc, each of which may
have its flow increased without increasing its kilter

number. This path may be traced backward from the sink

node of the target arc by means of the labels on the nodes
to the source node of the target arc. Then calculate the
maximum amount that the flow can be increased in the (non-
target) arcs in the cycle (or decreased in the target arc)
without increasing the kilter numbers of any of these arcs.
Let this number be ¢, and make this change in each arc of
the cycle. The kilter number of the problem has now de-
creased by at least as much as the kilter-number change

in the target arc. The kilter numbers for arcs not in

the cycle are unchanged, and the kilter numbers of the

arcs in the cycle are

J—— RS U
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E; kj = max(0, kj - €)

P where k, is the old kilter number and ks is the new kilter

number for the arc } in the cycle. Since we are dealing

% with integers, ¢ is at least 1.

|

E NON -BREAKTHROUGH

| A non-breakthrough occurs if no more nodes can be
labeled and the sink node of the target arc is not labeled.
The nodes are then divided into two classes, labeled and
unlabeled. The set of arcs that have one node labeled

and one node unlabeled will be called the cut set for this

labeling, since the arcs in the cut set cut off the set of

— " labeled nodes from the set of unlabeled nodes. The target
arc is a member of this cut set. Suppose that all arcs
in the cut get have their source nodes labeled and their
sink nodes unlabeled. (If an arc is labeled conversely,
we may reverse it by the transformation mentioned above
in Sec. I.) Then all of the arcs in the cut set hava the
property that their flows cannot be iacreased without in-
creasing their kilter numbers. As shown in Fig. 3, these
arcs must be in states a5, B5, ¥5, o4, B4, ¥4, ¥3, or y2.

That is, the flow in each arc is either at or above its
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y f set of nodes are increased by any constant, then only the

' nodes. The leftward pointing arrows in Fig. 4 indicate

! the reduced cost of the arcs in the cut set. Note that

'29' , 4

upper bound or its reduced cost is positive and its flow
is at or above its lower bound. These stetes are those

in Fig. 4 for which arrows point to the left.

Note that if the prices of the nodes in the unlabeled

arcs in the cut set will have their reduced cost changed,

e+ e o e o St i i ewm 3 7 N

and this change in the reduced cost will be precisely the

negative of the change in node prices of the unlabeled

the direction of state change that may occur by decreasing

the arrows point toward states that have no greater kilter

numbers than they do themselves.

Let A be the amount that the unlabeled nodes are going

to have their prices raised, i.e., the amount that the re=~
duced costs of that arc in the cut set will be decreased.
Denote by Case 1 the situation that exists if there are

any arcs in the cut set which are in states y2 or ¥3, i.e.,

| with x < u (shown shaded in Fig. 4). Case 2 occurs when
all arcs in the cut set have flows at leust equal to their
upper capacities.

Consider first Case 1. It is clear that the value of

4 must not exceed the value of the reduced cost for any arc

[ 14]
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% = u X - u X =3
X =4 -
0
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x = ¢
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x <1
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c <0

Fig. 4--Kilter Numbers of the Various States
(Arrows show the states which may have
their reduced costs lowered in a non-

in the cut set in state y2 or y3, but that the reéeduced
costs of arcs in the cut set in other states may be de-
i creased by any amount without increasing their kilter

numbers. Denote as ths critical arc that (or one of the)

arc(s) in state y2 or y3 with the lowest reduced cost.

Let A be the reduced cost of the critical arc and increase
the node prices of all unlabeled nodes by A, If the
critical arc is in state y2, its kilter number will remain

at zero.




S JESRERS, Jnd 2ot oSSy

w3l.

Now considar Case 2. All arcs in the cut set have

flows at least equaling their upper capacities. Lot the

‘ critical arc be the arc with the maximum reduced cost. _
1f the critical arc has a positive reduced cost, let A
- be this number and raise the prices of the unlabeled nodes i
" by A. This causes every arc that had a positive reduced
coat to now have a non-positive reduced cost and to have
its kilter number reduced from x « £ to x = u, On the
other hand, if the critical arc has a non-positive reduced

cost, then all arcs in the cut set have a non-positive

A -

reduced cost; and the kilter number of the target arc can-

not be reduced. Hence, the problem i{s infeasible. The

cut set is then a cut in the classical sense in that the

| __ _target arc has a flow above its upper capacity and the only =
way to reduce the flow in the target arc is to increase the

flow in some other arc(s) in the cut set which has a flow

at least equaling its upper capacities. 1f the flow in
the target arc exceeds its upper capacity, the problem is
infeasible (in Case 2) regardless of the sign of the re-
duced cost of the critical arc, but some improvement of

the kilter numbers occurs if the reduced cost of the

critical arc is positive.

L T2)
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In any event, for Case 2, after the node prices have
been changed, the kilter mumber of the target arc has been
minimized (to zero if its flow was at the upper capacity)
and no more labelings with this arc as the target arc
should be attempted. In Case 1, the labeling procedures
should now be continued, keeping the labels intact for the
nodes already labeled. At least one more node can be
labelad, in particular, the sink node of the critical arc.
Hence, since there are m nodes, at most m - 1 consecutive
Case 1 non-breakthroughs can occur with the same target
arc. If the problem is feasible, the kilter number for
the problem will be decreased after at most m labelings,

Henca, it 13 seen that the algorithm converges.




prT—

SHITS —u‘u-‘.»«a‘&v -

-33-

110, RELATED ALGORITHNS

THE INFEASIBILLTY ALGORITHM
Fcr sach arc, j, of the network, define qj‘ the

infeasibility pymber:
qj = max(0, xJ - uj, LJ - xj) ,
and Q, the totgl infeasibility:

n
Q= ij .
J=1

It is clear that qy is the amount (if any) that the flow

violates the upper or lower capacities imposed on the arc

'§. 1t is also clear that the kilter 5ﬁmbér, K, of the

problem can be reduced to the value of Q, and that if Q

is at its minimum value, then K can be reduced to its
minimum value (which 18 K = Q) using the out-of-kilter
algorithm. If Q is not at its minimum value, and if the
problem is infeasible, then K may not be reduced to its
minimum value by the out~of-kilter algorithm, For example,
the network of Fig. 5 has initially zero flow in each of

its three arcs, the upper capacity is ecqual to the lower
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(1,1 (0,0)

B (1,1) c

Fig. 5--Example Network (Numbers in parenthesis
are the lower and upper capacities.)

capacity for each arc, and the capacity for arc (A,B) is 1,
,,,,,, __for arc (B,C) is 1, and for arc (C,A) 18 O, Arc (C,A) is

"in-kilter," while tha others are not; but any change in
the flow will cause arc (C,A) to go "out-of-kilter," hence,
nothing can be done to this network by the out-of-kilter
algorithm. Thus, K remains at 2, despite the fact that

the minimum K 18 1. This minimm is ocbtained by forcing

a flow of 1 into each arc, thereby increasing the kilter
nmber (which in this case is also the infeasibility
number) of arc (C,A) to 1 and decreasing the kilter numbers

of the other two arcs to zero. 7The attainment of the




minimm K can also depend on the order in which arcs are
chosen to be brought intc kilter and on the order in which
nodes are lsbaled. The network in Fig. 6 is an example in

which either of these possibilities can occur.

(1,1)

LL (1,1)

Fig. 6--Another Example of an Inf‘fﬁfklewnﬁFVBER”Wﬂﬁw,

An algorithm will now be developed to solve the prob-
lem of minimizing Q for a network, In order to develop

this algorithm, we use the artifice of replacing each arc

of the network by three new arcs. Suppose an arc has
source node A, sink node B, lower capacity {, upper
capacity u, and nominal flow x. The three arcs that re-

place this arc (see FPig. 7), each have source node A and
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Fig. 7--Artificial Arcs Used in Infeasibility
Algorithm

sink node B, and are denoted as arc -1, arc 0, and arc +1.

These arcs have the following properties:

Unit Lower Upper

Arc Cost Capacity Capacity Flow

arc -1 ¢ =21 (" m.e u =0 x~ = min(0, x - ¢)

arc 0 L 0 et Leu 0 - max(¢, min(u,x))
+ +

arc +1 ¢ = +1 ¢ = 0 u+ - o x+ = max(0, x - u)
Note that x = x  + xo + x+, and that the flows are
feasible in each arc. Hence, this new problem is feasible

and its total cost is precisely Q of the original problem.
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let ¥, ¥, and y' be the reduced costs for arcs -1, 0, and

+1, respectively, so thut

Y o melda, -y =y -l

y =0 + 7, - 'B

+
y = +1 + LW

=y +1,

It is not necessary to deal with node prices for this algo-
rithm, but only with the reduced costs y, which for each

arc are initially zero. Hence y~ = -1 and y+ = +1 initially,.
7+ must remain non-negative, since it could become negative

only if the flow in arc +1 were at its upper bound, whick

would imply that Q is infinite. Similarly, 3~ must remain

non-positive. Thus,

y wy <150

ytey+1la2o,
or

y 1

y 2 -1,

e oraeae Rl b M
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i.e., |y] £ 1. But y will take on only integral values;
hence, y may only be 0 or t1. Arc -1 will heve non-zero
(negative) flow only {f x < ¢, and its flow may be decreased
(made more negative) only if 3 : 0, L.e., (eince y must be
non-positive) ¥ =« 0 or ¥ = 1. Similarly, the flow may be
increased in acc +1 only 1if ¥y = -1; and arc +1 will have
non~zero flow only {f x > u.

The above discussion shows that if node 2 is labeled
then node B can be labeled:

1) via arc -1 if x < ¢;

2) via arc 0 {f x <u and y ¥ 1;

3) via arc +1 if y = -1,

The state diagram of this composite arc is showm in
Fig. 8. Note that the states that are impossible for y ¢ 0
are crossed out. If a non-breakthrough occurs, then for each
composite arc that has its source node labeled and its sink
node unlabeled, either {y = 0 and x 2 u} or {y = +1 and
x = ). Increasing the node prices (which are not being
computed) of the unlabeled nodes by +lL is equivalent to
decreasing y of this composite arc by 1 (or increasing
y by 1 {f the arc is labeled conversely). This moves
the state of the arc one box to the left, and hence to

a labelable state (unless x = ¢ = u). Moreover, this
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Fig., 8--Arc States in which Flow may be Increased
in the Infeasibility Algorithm

change of the y's puts the target arc into kilter, since
a composite arc is in kilter if either y # 0 or ¢ < x s 1,
Hence, the problem of minimizing Q may be solved by
the out~of-kilter algorithm by replacing each arc by three
arcs with appropriate bounds and costs. But these com~
posite arcs were merely an artifice used for determining
& new algorithm based on the out-of-kilter method. Now,
discarding the composite arcs, this method may be

summarized.
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Begin with numbers V1Y e sy all zero. Look for

J
If no such arc exists, Q@ has been minimized and we are done.

en are, J, with Yy " 0, and either x, > uJ or Xy < LJ.

When an arc is found with thase properties, label its source

L

node Lf Xy > uy and its sink node 1f Xy < 44, Then begin
a labeling procedure that terminates if the other node of

arc J is labeled or if no more nodes can be labeled.

[P UIPE ST S O

I1f arc j has its source node labeled and its sink
node unlabeled, the sink node can be labeled if
= 0 and <
1) yj an Xy “j’
or !
2 B
) 5

or _ .

= -1’

3) x, <4

Yy N
If the sink node is labeled and the source node unlabeled,
the source node can be labeled if
1) yj-Oandxj>Lj,
or
2) vy = +1,
or

3) x, > u,.

i3
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When the labeling procedure results in a breakthrough
(i.e., both nodes of arc J have been labeled), the cycle
is determined, and ¢ i3 calculated and added to those arcs
labeled (forward) from source to sink and subtracted from
those arcs labeled (backward) from sink to source. ¢ is

the minimum of

1) u.j - xj if 7j = 0 and arc j labeled forward,

2) xj - Lj if yJ = 0 and arc j labeled backward,
3) Lj - xj if yj = +1 and arc j labeled forward,
4) xj - uj if yj = -] and 8-~ j labeled backward

for all arcs in the cycle. If an arc, j, is labeled for-
ward and yj = -] or labeled backward and yj = 41, then
this arc imposes no limit on e¢. All arcs with yj = (0 do
impose a limit, and arc J is one of these, After the ¢
change in the cycle, Xy may or may not satisfy Xy 2 LJ
and Xy % uy. If it does satisfy these conditions, then
look for another arc to label. If it does not satisfy
these conditions, begin the labeling procedure anew with
arc J.

When the labeling procedure results in a non-break-
through, subtract 1 from yj of all arcs with the source
node labeled and the sink node unlabeled, and add 1 to yj

for all arcs with the source node unlabeled and the sink

e




node labeled. The other arcs do rot have a change made

in yj. In particular, arc J has one node labeled and

one unlabeled; hence, now 14 S 41. Thus, another arc must

be found to begin the labaling procedure again.
Eventually, every arc will have either 7y $# 0 or

L

s X The infeasibility of the flow has then been

s u,,
377
minimized. If 7y $# 0, arc j is not necessarily infeasible,
but all arcs with non-zero y can be thought of as part of

a cut set for all of the infeanible arcs.

THE FEASIBILITY ALGORITHM
The feasibility algorithm is similar to the infeasi-

bility algorithm, except that one is not interested in

minimizing the infeasibility but only in finding a feasible

flow if it exists. If the problem is feasible, no non-
breakthroughs will occur in the infeasibility algorithm.
Hence, the reduced costs, y, will never be made nbn-zero.

The labeling procedure for the feasibility algorithm
is as follows. If the source node of arc j is labeled and
the sink node 1s unlabeled, then the sink node can be

labeled Lif x 1f the sink node is labeled and the

5 < uj.
source node is unlabeled, then the source node can be

labeled 1if xj > Lj. Only arcs which are infeasible are

chosen as target arcs. If a non-breakthrough occurs, the
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problem is infeasible. Otherwise, only breakthroughs will
occur, and the problem will be feasible when all arcs asre
made faasible. For this algorithm, no yJ are calculated.
Hence, it 1s simpler computationslly than the infeasibility
algorithm,.

TWO-PHASE ALGORITHMS

Either the infeasibility algorithm or the feasibility
algoritlm may be used as the first phase of a two-phase
algorithm. Then the second phase is the out-of-kilter
algorithm described in Sec. II. 1f phase 1 causes the
network to be feasible, certain tests in the out-of-kilter
algorithm become unnecessary. In th: labeling procedure,

if the source node of arc j is labeled and the sink node

b
xj < “j’ The additional case, that xj < Lj and cj >0,

1s unlabeled, the sink node can be labeled if ¢, s 0 and
cannot occur in this algorithm and need not be tested.

Similarly, in the non-breakthrough procedure, the tests

for x > u can be omitted.

P
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1 COMPUTA

LABELING
The method of labeling nodes described in Sec. 11

was that of looking for an arc with one node labeled and
oneg node unlabeled and then determining whether the un~
labeled node could be labeled. A method has evolved that
requires less searching for arcs with exactly one node
labeled. The idea of this method is to set up what is
called a scan list. Associated with the scan list are
two indices: 8, the length of the scan list, and p, the
position of the scanner. Denote the scan list itself by

R(1) ,R(2),...,R(8). The procedure begins with p = 1,

s =1, and R(l) « node which is the labeling origin. Then
' look nt (1 e., scan) eaéh arc for which tﬁég;;&; R(pi is
its source node or its sink node. If the other node of
any of these arcs can be labeled, do so, increase s by 1
and set R(s8) to the node just labeled. If R(s) is the
terminal node, then the labeling procedure is done and a
breakthrough has occurred. When all of the arcs joining
node R(p) have been scanned and no breakthrough has occurred,
increase p by 1, then repeat the process for the new node
R(p). If p > s, then the scan list has been exhausted

and a non-breakthrough has occurred.
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When this procedure is used, each arc can be "looked
at' at most twice: once from each of its nodes. But, in
order for this method to be more efficient than one that
merely searches for arcs with one node labeled, lists must

be set up of tha arcs that join each particular node.

LIST STRUCTURE
Let there be n arcs such that the j':h arc has source
node S{j] and sink node T{j). Suppose that there are m
nodes numbered from 1 through m and, therefore, that S and
T have values in this range. Assuming that the arcs are
in no particular order, it is necessary to set up four
lists, say U, V, g, and h, where U and V are arrays of

length mt+l and g and h are of length n. Let o be the

, i
number of arcs that have node i as their source node and
let fi be the number of arcs that have node i as their
sink node. Either o, or T, but not both, may be zero.

Then U and V are defined recursively:

and
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Vt*l - Vi + r’. i"l,Z,...,I *

Now, let Py = Ui for 1=1,2,...,m. For each § from 1
through n, let i = S(j3, g[pi] = §, and then increase p,

by 1. When this is done, g[Ui] through g(UV -1 18 a

i+1
list of the arcs with node i as the source node. The

same procedure is repeated for V and h with the sink nodes,
giving a list of the arcs with the same sink node,

The ALGOL procedure in the Appendix uses the above
1lists. This procedure executes the out-of-kilter algorithm
as described in Sec. 11, This may be compared with the
simpler program in Ref. 4. The symbols used in this pro-
g*lm are substantially the same as the ones given at the
beginning (p. xi) and used throughout this Memorandum.

Space may be saved by arranging the arcs so that the
source nodes are in order. Then the list g 1is unnecessary
since g(j) = j. This procedure is used in the FORTRAN
program of Ref, 5.

More complicated list structures may be needed if

this procedure must store data on such peripheral devices

as disks. In this event, it may be useful to double each
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arc so that it has its forward and backward representa-
tions f{n the lists. Then only one "disk file' need be

retriaved for scanning each node.

TENTATIVE CONCIUSIONS

Several experiments were done with the methods de-
scribud above., Since these experiments were not at all
extensive, and since the results depend greatly on the
type of problem and machine software, these conclusions
should not be regarded as final.

Several problems were solved using the algorithm
described in Ref. 4 and the algorithm given in the Appendix.
The largest problem solved had 1530 arcs. This problem
was run on a relatively slow machine (IBM 360 Model 40)
wffhiih;'resﬁlt that the ﬁfogram withrthe list structure
described above ran five times as fast as the program with-
out this list structure (30 min vs. 2.5 hr). This time
ratio should increase on larger problems and decrease on
smaller problems. The faster problem solution using the
program with the list structure must be balanced against
the greater storage capacity needed for the lists.

Several tests were made employing a two-phase algo-
rithm, with the first phase being the feasibility algorithm
described in Sec. III. This modification increased the
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number of calculations, and hence cannot be recommended.
In fact, Fulkerson's (3] original description of the
algorithm seems to be the most efficient, even though
certain Case 2 non-breakthrough calculations were not
made. Therefore, some of these calculations are not

included in the appended ALGOL procedure.
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Appendix
ALGOL PROCEDUT

This ALGOL procedure should be self-explanatory since
it uses the symbols appearing in the body of this Memo-
randun. Upper and lower case symbols are distinct. The
symbol "pi" corresponds to the symbol 7 in the text, 'out-
kilter'" is the number of arcs that could not be brought
into kilter by the procedure, and 'refnode' is an arbitrary
node whose 7 value is not changed by the procedure. This
procedure was not checked in the ALGOL language; hence,

all errors may not have been detected.

Procedure network (m,n,S,T,c,u,4,x,pi,refnode outkilter)
integer m,n,refnode,outkilter;
integer array S,T,c,u,¢,x,pi;
begin integer array U,V(1l:m+2),g,h(1l:n?,L,R{1:m7;
integer J,aa,term,laborg,origin,i,j,p,k,s,a,kp,Kq,eps,epsl;
Boolean breakthru;
outkilter:= 0;
go to setup;
endsetup: for ji= 1 step l until n do

c(j)i= c())+pi(S[I N -pi(T(j);
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comment look for an out-of-kilter arc;

| search: J:= 1; as:= 0; breakthru:= true;

mainlp: 1f x(J)<t(J)Vve(J)<0Ax(J)<u(J) then go to fd;
Lf x(I)>u(I)ve(I)>0rx(I)>4(J) then go to bd;

return: Ji= J+1;

A A AL

if J<n then go to mainlp;
for j:= 1 step 1 until n do
c(§):= c(3)-pi(8{j D +pi(T(5]); Bo to endn;
fd: term:= S[J7; origin:= T{J]; laborg:= J;
&9 to preleb;
bd: term:= T[J]; origin:= S{J]; laborg:= -J;
l% prelab: R(1l):= origin; go to label;
& coument count arcs beginning and ending at nodes;
L setup: for i:= 3 step 1 until m + 2 do
bagin U(i):= 0, V(i):= 0 end;
for j:=1 step 1 until n do
begin U(S[3) + 2):= U(S[j] + 2) + 1;
' V(T(§) + 2):= V(T(§] + 2) + 1 end;
? comment cumulate counts;
i UC1):= 1; U(2):= 1;
} V(1) := 1; V(2):= 1;

for i:= 3 step 1 until m + 1 do
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begin U(1):= U(1) + u(i-1);
V(L) := V(1) + V(i-1) end;

coument set up arc locator lists;

for i:= 1 step 1 until n do
begin glU(sS{jl + 1) J:= 3;
hIV(T[§] + 1) )= 3
U(slj1 + = Uu(s(y] + 1) +1;
V(T[§] + )= V(T(§1 + 1) + 1
end;
go to endsetup;
label: if —breakthruAJ=aa then go to label2;
comment zero out labels;
for i:= 1 step 1 until n do L(i): = 0}
s:= 1;
label2: p:= 1; aa:= J; breakthru:= false; L(origin):= laborg;
comment try to label the forward arcs;
labelld: i:= R(p);

for a:= U(i) step 1 until U(i+l)-1 do begin

ji= glad; ki= T[3];
1f L(k)=0Alx(j)<t(3)ve())s0rx(j)<u(f) then
begin L(k):= j; s:= s+l; R(s):~ k end; end;

comment try to label the backward arcs;
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for a:« V(i) step 1 until V(i+1)-1 do begin

Ji= hia?; k:= 8031
1f L(K)=0Alx(j)>u(j)ve(J)202x(3)>+(3) ] then
begin L(k):= -j; s:= s+l; R(s):= k end; end;
comment test for terminal labeled;
if L(term)#0 then go to break;
pi= ptl;
compment if scan list exhausted, non-breakthru;
if p>s then go to nobreak;
go to label3;
comment find flow increment in cycle;
break: eps:= 999999999; breakthru:= true;
Kt:= term;
ji=1
breakloop: Kq:= L(Kt); kp:= abs(Kq);
if Kq>0 then go to forwardbreak; Kt:= T(kp);

if c(kp)20 then go to lowerbreak;

£o to upperbreak;
forwardbreak: Kt:= S[kp]

if c(kp)>0 then go to lowerbreak;
upperbreak: eps:= min(eps,abs(u(t )-x(kp)));

£o to endbreakloop;




lowerbreak: cps:= min{eps,abs(?(kp)-x(kp)));

endbreakloop: R(j):« Kq;
if Kt = term then go to increment;
Ji= j+1; Bo to breakloop;
comment Increment tlow;
increment: fcr i:« 1 step 1 until j do
1f R(1)>0 then
x(R{1)):= x(R(1)) + eps
else x(-R(1)):= x(-R(i)) - eps;
£0 to mainlp;
comment £ind delta for non-kreakthru;
nobreak: epsl:= $99999999;

for j:= 1 step 1 until n do

1€ L(S[31)AOAL(T{] 1) =0x () <u(])
VL(S[31)=0AL(T(j1)$0/x(3)>¢(])
then epsl:= min(eps,abs(c(j)));
comment test for case 2;
eps:= epsl;
1f eps$999999999 then go to change;
1f c(J)=0vsign(L(origin))=sign(c(J))
then go to infeas;

eps:= abs(c(J));
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comment change reduced costs;
change: for j:= 1 step 1 until n do
if L(S[31)=0AL(TI) )40
then c(4):= c(j) + eps glse
LE L(S[11)40AL(T(41)=0
then ¢(j):= c(j) - eps;
comment change node prices;
if L(refnode)#0 then
for i:= 1 step 1 until m do begin
Lf L(1)=0 then pi(i):= pi(i) + eps end else
for i:= 1 step 1 until m do
if L(1)40 then pi(i):= pi(1i) - eps;
if eps=epslvx(J)=L(J)vx(J)=u(J) then
&0 to main loop;

infeas: outkilter:= outkilter + 1; go to return;

endn: end network
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